Mathekram

Mathematik rein und angewandt, erforscht und unterrichtet (ein Matheblog)

Archive for Mai 2011

Das erste Mathe-Abitur des G8 in Bayern (I)

Posted by Modulix - Mai 26, 2011

Am 20. Mai, also ziemlich genau vor einer Woche wurde das erste Mathematik-Abitur des achtjährigen Gymnasiums geschrieben.

Interessant an diesem Mathe-Abitur war, dass das Schlagwort von der neuen „Aufgabenkultur“ inzwischen Gestalt in Form bestimmter Aufgaben angenommen hat , die sich deutlich vom bisherigen G9-Abi unterscheiden.

Das schlägt sich insbesondere im Analysis-Teil (der hinsichtlich Punkte-Gewichtung die Hälfte der Note ausmacht) und im Geometrie-Teil nieder. Der Stochastik-Teil ist eher durch Standard-Aufgaben geprägt.

Insbesondere der Analysis-Teil ist besonders interessant:

Er beginnt mit ein paar Einstiegsaufgaben, die im Grunde nicht sehr schwer sind, aber doch grundlegendes Verständnis abfragen. Typisch ist dabei folgende Aufgabe: (Aufgabe 4  aus Aufgabengruppe II, Analysis Teil I)

„Geben Sie den Term einer gebrochen-rationalen Funktion f mit Definitionsmenge \mathbb{R}\setminus\{0\} an, deren Graph die Gerade mit der Gleichung y =2 als Asymptote besitzt und in x =-1 eine Polstelle ohne Vorzeichenwechsel hat.“

Gerade diese Aufgabe fordert die Schülerinnen und Schüler, etwas selbst zu erstellen, freilich nach bestimmten Vorgaben, aber sie sollen unter Verwendung eines gewissen Repertoires an Kenntnissen eine Funktion basteln, die den Forderungen genügt. Es geht hier also gerade nicht darum, ein Kalkül  blind abzuspulen, sondern ein bisschen nachzudenken. Außerdem gibt es im Prinzip unendlich viele Lösungen.

Eine Lösung wäre übrigens: f(x)=\frac{2(x-1)^{2}}{(x+1)^{2}}.

Im Bereich Geometrie konnte man (wie auch in den anderen beiden Bereichen Analysis und Stochastik)  aus zwei Aufganegruppen wählen, die nicht ganz einfach waren, aber schon den Weg zu anderen Aufgabenformen weisen und deshalb von einigen Schülern als recht schwer empfunden werden. Das liegt daran, dass nicht so sehr das mühsame Gleichungslösen im Vordergrund steht, sondern eine auf elementargeometrische Einsichten abzielende Aufgabenstellung  favorisiert wird.

Ein Beispiel (Aufgabe b aus Geometrie Aufgabengruppe II):

Ein Dreieeck ABC sei rechtwinklig mit Hyptenuse [AB].

„Alle Punkte C* im Raum, die zusammen mit A und B ein zum Dreieck ABC kongruentes Dreieck festlegen, bilden zwei gleich große Kreise. Beschreiben Sie (z.B.durch eine Skizze) die Lage der beiden Kreise bezüglich der Strecke [AB] und ermitteln Sie den Radius der beiden Kreise“

Hier muss also etwas beschrieben werden. Hier geht es um „Kongruenz„, ein Begriff der zwar grundlegend ist, den viele Schüler aber zuletzt in der 7. Klasse gehört haben könnten. Dass es um die Rotation der beiden Dreiecke geht, die im Thaleskreis über der Hypotenuse [AB] liegen und die Maße des Ausgangsdreiecks ABC haben, zielt auf die Elementargeometrie ab.

Die Bsteimmung der Höhe kann über ähnliche Dreiecke oder über die Flächenformel: A=1/2 ab=1/2ch bestimmt werden.

Posted in Analysis, G8-Themen, Geometrie, Schulmathematik | 2 Comments »